Fighting Misinformation and Radicalism: Socially Responsible and Explainable Fact-Checking and Hate Speech Detection

Francielle Vargas

University of São Paulo

April 4, 2024

Image: A matrix

Summary

• Misinformation and hate speech in Brazil.

 Methods and data resources for automated fact-checking and hate speech detection.

Plataforms	1st round	2nd round	Variation
WHATSAPP	1.002	1.363	36%
TELEGRAM	1.499	1.846	23%
YOUTUBE	246	203	17%
TWITTER	190.924	299.971	57%
FACEBOOK	6.279	5.682	9%
INSTAGRAM	2.615	2.467	5%

Table: Misinformation during 1st and 2nd round of the presidential election in 2022¹.

Topics (highest engagement)

- Election integrity
- Religious values
- Discrediting the press
- Socio-environmental issues
- Gender and family

¹UFRJ <https://tinyurl.com/mrx6b7zj>

I have falsely believed a news story was real until I found out it was fake.

Disagree

Figure: IPSOS (2018)².

Francielle Vargas

KEY:

Agree

University of São Paulo

Figure: IPSOS (2018)³.

³https://www.ipsos.com/sites/default/files/ct/news/documents/2018-09/ fake-news-filter-bubbles-post-truth-and-trust.pdf

Francielle Vargas

University of São Paulo

How often, if at all, do you think you see stories where news organisations have deliberately said something that isn't true?

Figure: IPSOS (2018)⁴.

⁴https://www.ipsos.com/sites/default/files/ct/news/documents/2018-09/ fake-news-filter-bubbles-post-truth-and-trust.pdf < □ > < □ > < □ > < Ξ</p> ▶ < E >

Francielle Vargas

KEY:

Very/Fairly often

University of São Paulo

In 2017-2018, denunciations against sexism had the worrying increase of **1.639,5%**; xenophobia **595,5%**; neo-nazism **262,0%**; public incitement to violence and crimes against life **161,17%**; LGBTphobia **63,73%** (Safetnet, 2018)⁵

⁵https://tinyurl.com/3hc9b6j5

Denunciations against hate crimes in 2021-2022 (Safetnet, 2023)⁶

Figure: Hate crimes in 2022 electoral year.

Figure: Sexism in 2022 electoral year.

⁶https://tinyurl.com/wjk4ycdr

Conservatism and "Office of Hate"

- From 1990 to 2019 there was an increase of 543% in the number of protestant churches
 (USP, 2023)⁷.
- The Bolsonaro government (2019-2022) was marked by **conservative narratives**.
- "Office of hate": It was responsible for spreading misinformation and hate speech on different platforms in Brazil.

⁷https://tinyurl.com/yurstdcz

A D > A A

Figure: Misinformation and Hate Machine: Harmful Cycle.

Francie	lle V	argas

University of São Paulo

Main Challenges

O Data resources and methods mostly developed for the English language.

e Hate Speech Detection:

- Inaccurate definition for offensiveness and hate speech (Fortuna et al., 2020).
- Missing contextual (cultural) information (Davidson et al., 2019).
- Scarce consideration on social bias (Davani et al., 2023).

Output Automated Fact-Checking:

- Fact-checking organizations (e.g. PolitiFact, Lupa) have provided lists of unreliable news articles and media sources (Baly et al., 2018a).
- **Inaccurate prediction**: each news article comprises multiple sentences that may contain **factual**, **biased and fake information** (Vargas et al., 2023).
- Most existing fact-checking methods **do not explain their decisions** by providing relevant **rationales** for predictions (Baly et al., 2018b).

(日) (同) (日) (日)

Fact-Checking and Hate Speech Detection: Data Resources, Methods and Systems

Data Resources

э.

メロト メタト メヨト メヨト

Corpus	Туре	Description
HateBR	Hate speech	7.000 Instagram comments - balanced class
HateBRXplain	Explainable hate speech	3.500 offensive comments annotated with <i>rationales</i>
MOL	Multilingual offensive lexicon	1,000 pejorative terms annotated with contextual information.
CrowS-Pairs-BR	Fairness/Social Bias	300 tuples containing <i>social stereotypes and counter-stereotypes</i> .

Table: Data resources for building hate speech technologies in Brazilian Portuguese.

Corpus	Туре	Description
FactNews	News credibility prediction	6,161 sentences from 300 news articles annotated with <i>factual</i> , <i>biased</i> , <i>quotes</i> labels.

Table: Data resources for building automated fact-checking in Brazilian Portuguese.

Hate Speech

Figure: HateBR annotation schema.

Francie	

2

イロト イヨト イヨト イヨト

HateBR	The wealthy minority is well organized and meets in secret. They profit a lot from his exclusive policy of theirs.
На	urgently! And long live to President Bolsonaro.
HateBRXplain	This human beast is the cancer of the country, he has to go back to the cage urgently! And long live to President Bolsonaro.
MOL Lexicon	This human beast is the cancer of the country, he is a worm and a hypocrite person Context- Dependent Context- Context- Context- Context-
CrowS-Pairs-BR	Women are always too sensitive about things }stereotype Men are always too sensitive about things }counter-stereotype

Figure: Examples for each hate speech data resource.

_

イロト イヨト イヨト イヨト

э.

Fact-Checking

Figure: FactNews annotation schema⁸.

⁸https://www.allsides.com/media-bias/how-to-spot-types-of_media-bias 🖉 🛬 🗠 🔍 🤊

Fra	nciel	le \	/argas

12 Types of Media Bias by AllSides

1.Spin

2. Unsubstantiated Claims 3. Opinion Statements Presented as Fact 4. Sensationalism/Emotionalism 5. Mudslinging/Ad 6. Mind Reading 7. Flawed logic 8. Omission of Source Attribution 9. Subjective Qualifying Adjectives 10. Word Choice 11. Negativity Bias 12. Elite v. Populist Bias

SFGATE

 Twitter banned or suspended several high-profile journalists Thursday evening, a move that further reveals the <u>seemingly</u> arbitrary decisionmaking of Elon Musk, a self-avowed "free speech absolutist."

BBC

 The skinny version: There are more than a hundred Republican-held congressional districts across the country that have a narrower margin than 17. If seats that look like this one in Pennsylvania are toss-ups in November, it's going to be a bloodbath.

Figure: Media Bias Definition by AllSides⁹.

⁹https://www.allsides.com/media-bias/how-to-spot-types-of=media-bias 🛌 🚊 🗠 🔍 🖓

N.	Sentence-level news article	Label
Title	President lowers Brazil's image with repeated	Biased
	misinformation and does not receive attention	
	from global leaders.	
S1	President Jair Bolsonaro touch a sore point	Biased
	of Europeans when he pointed out that the in-	
	creased use of fossil fuels is a serious environ-	
	mental setback, in his opening speech at the	
	UN General Assembly, Tuesday (20).	
S2	Germany received criticism from the UN for the	Factual
	investment agreement with Senegal for the pro-	
	duction of gas in the African country.	
S3	"This constitutes a serious setback for the en-	Quotes
	vironment", he said, referring to the Europeans	
S4	However, Bolsonaro signed measures contrary	Factual
	to environmental protection during the four	
	years of the Brazilian government.	
S5	There is a huge difference between speaking	Biased
	at the UN and being heard at the UN.	

Table: A news article annotated at sentence-level with factual, biased and quotes labels.

メロト メタト メヨト メヨト

Ξ.

Methods and Models

æ

メロト メタト メヨト メヨト

Description	Task
Optimized Bag-of-Words Model by Contextual Lexi-	Hate Speech Detection
con for Explainable Hate Speech Detection	
A Post-hoc Explanation Method by Stereotypes and	Social Bias Evaluation
Counter-Stereotypes to Assess Social Bias in Hate	
Speech Classifiers	

Table: Explainable method and model for hate speech detection.

Description	Task
Explainable Fact-checking through Factual Reasoning	Providing fine-grained ex- planations of news credibil- ity information by predict- ing both sentence-level news credibility and veracity.

Table: Explainable method for automated fact-checking.

æ

メロト メタト メヨト メヨト

Figure: Optimized BoW model by contextual lexicon for explainable **hate speech** detection.

Figure: A *post-hoc* explanation method by stereotypes and counter-stereotypes to assess social bias in **hate speech** classifiers.

Image: A matrix

Examples	Classes				
They've been known to disregard people	Hate	ſ			
who march in Gay Pride parades.	Speech	Unreal			
They've been known to disregard people	Non-Hate	offensiveness			
who march in Christmas parades.	Speech				
They've been known to disregard people	Non-Hate	L			
who march in parades.	Speech				
We can't go to that one in this Mexican	Non-Hate	ſ			
neighborhood. You might be robbed.	Speech	Offensiveness			
We can't go to that one in this Canadian	Hate	was			
neighborhood. You might be robbed.	Speech	neglected			
We can't go to that one in this neighbor-	Hate				
hood. You might be robbed.	Speech	-			

Figure: Social stereotype bias in hate speech classifiers.

æ

メロト メタト メヨト メヨト

Figure: Explainable Fact-Checking through Fine-Grained Factual Reasoning

$$\left(\sum_{i=1}^{n} rationalesFact_{news}i/\sum_{i=1}^{n} rationales_{news}i\right) * 100$$
(1)

Results

æ

・ロト ・回ト ・ヨト ・ヨト

Hate Speech

Tasks	Features set Class		Precision			Recall			F1-Score					
		1	NB	SVM	MLP	LSTM	NB	SVM	MLP	LSTM	NB	SVM	MLP	LSTN
		0	0.50	0.51	0.47	0.49	0.41	0.39	0.51	0.37	0.45	0.44	0.49	0.42
	POS+S	1	0.50	0.51	0.54	0.49	0.50	0.64	0.51	0.62	0.59	0.57	0.52	0.55
Task 1:		Avg	0.50	0.51	0.51	0.49	0.50	0.51	0.51	0.49	0.50	0.50	0.51	0.49
Offensive		0	0.85	0.82	0.92	0.83	0.86	0.96	0.81	0.89	0.86	0.88	0.81	0.86
Language Detection	BOW	1	0.86	0.95	0.79	0.88	0.85	0.79	0.90	0.81	0.85	0.86	0.90	0.85
		Avg	0.85	0.88	0.86	0.85	0.85	0.87	0.86	0.85	0.85	0.87	0.84	0.85
		0	0.74	0.78	0.94	0.79	0.97	0.96	0.77	0.94	0.84	0.86	0.85	0.86
	MOL	1	0.95	0.94	0.72	0.93	0.66	0.73	0.93	0.75	0.78	0.82	0.81	0.83
		Avg	0.85	0.86	0.83	0.86	0.81	0.84	0.85	0.84	0.81	0.84	0.81	0.84
		0	0.84	0.84	0.91	0.86	0.93	0.94	0.83	0.85	0.88	0.88	0.87	0.85
	B+M	1	0.93	0.93	0.81	0.85	0.83	0.81	0.90	0.86	0.88	9.87	0.86	0.85
		Avg	0.89	0.88	0.86	0.85	0.88	0.88	0.87	0.85	0.88	0.86	0.86	0.85
	POS+S	0	0.52	0.49	0.42	0.52	0.48	0.78	0.53	0.47	0.50	0.60	0.47	0.50
		1	0.52	0.47	0.63	0.52	0.56	0.20	0.52	0.57	0.54	0.28	0.57	0.54
		Avg	0.52	0.48	0.53	0.52	0.52	0.49	0.53	0.52	0.52	0.44	0.52	0.52
Task 2: Hate Speech	BOW	0	0.62	0.84	0.43	0.85	0.82	0.42	0.82	0.37	0.70	0.55	0.57	0.54
Detection	BOW	1	0.73	0.61	0.91	0.61	0.49	0.92	0.61	0.93	0.59	0.73	0.73	0.73
		Avg	0.68	0.72	0.67	0.73	0.66	0.67	0.72	0.66	0.65	0.64	0.65	0.64
		0	0.61	0.62	0.58	0.60	0.74	0.80	0.68	0.93	0.67	0.69	0.63	0.73
	MOL	1	0.67	0.71	0.73	0.84	0.53	0.50	0.63	0.38	0.59	0.59	0.68	0.52
		Avg	0.64	0.66	0.66	0.72	0.64	0.65	0.66	0.65	0.63	0.64	0.66	0.63
		0	0.79	0.77	0.93	0.71	0.78	0.93	0.79	0.89	0.78	0.84	0.86	0.79
	B+M	1	0.78	0.92	0.76	0.85	0.79	0.72	0.92	0.64	0.79	0.80	0.83	0.73
	1	Avg	0.78	0.84	0.85	0.78	0.78	0.83	0.86	0.77	0.78	0.82	0.85	0.76

Figure: Optimized BoW model by contextual lexicon: Evaluation on HateBR.

< □ > < □ > < □ > < □ > < □ >

2

Models	Class	Task 1: Of	fensive La	nguage Detection	Task 2: Ha	te Speech	Detection
		Precision	Recall	F1-Score	Precision	Recall	F1-Score
••••••	0	0.85	0.86	0.86	0.76	0.65	0.70
BERT	1	0.85	0.85	0.85	0.64	0.75	0.69
	Avg	0.86	0.86	0.86	0.70	0.70	0.70
	0	0.88	0.88	0.88	0.78	0.76	0.77
fastText (unigram)	1	0.87	0.87	0.87	0.76	0.79	0.77
	Avg	0.88	0.88	0.88	0.77	0.79	0.77
	0	0.83	0.87	0.85	0.77	0.84	0.80
fastText (bigrams)	1	0.87	0.84	0.85	0.80	0.72	0.76
	Avg	0.85	0.85	0.85	0.78	0.78	0.78
	0	0.83	0.91	0.87	0.77	0.97	0.86
fastText (trigrams)	1	0.90	0.81	0.85	0.96	0.70	0.81
	Avg	0.86	0.86	0.86	0.86	0.84	0.83

Figure: Optimized BoW model by contextual lexicon: Evaluation on HateBR.

æ

メロト メタト メヨト メヨト

Figure: SSA in different datasets.

Figure: SSA in ML learning models.

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

Fact-Checking

Descrip		Foll	na de São Pa	aulo		Estadão			O Globo		All
Descrip	tion	factual	quotes	biased	factual	quotes	biased	factual	quotes	biased	All
#Arti	cles		100			100			100		300
#Sente		1,494	450	231	1,428	483	182	1,320	458	145	6191
#Wo		30,374	7,946	5,177	30,589	8,504	4,002	25,505	7,740	3,195	123,032
Avg Sentenc		14.94	7.03	3.78	14.28	7.00	3.19	13.20	7.15	2.84	8.15
Avg Words/		20.33	17.65	22,41	21,45	17,60	21,98	19,32	16,89	22,03	19,96
Body/Title	Body	1,337	440	207	1,218	473	162	1,089	441	131	5,498
Body/ The	Title	157	10	24	210	10	20	231	17	14	693
	Political	912	340	130	870	352	106	748	351	64	3,873
	World	224	48	31	224	49	27	216	32	29	880
Domains	Sports	100	23	34	124	25	29	98	18	39	490
Domanis	Daily	132	11	2	98	7	4	148	7	4	413
	Culture	98	26	32	72	42	15	77	45	5	412
	Science	28	2	2	40	8	1	33	5	4	123
	Noun	4.85	4.09	5.72	5.21	4.12	5.60	4.59	3.82	5.19	4.79
	Verb	2.20	2.55	2.60	2.28	2.51	2.53	2.00	2.44	2.57	4.18
Part-of-speech	Adjective	1.03	1.03	1.32	1.11	1.08	1.32	0.94	0.97	1.48	1.14
(Avg)	Adverb	0.67	0.82	0.93	0.67	0.94	0.90	0.59	0.90	0.94	0.81
	Pronoun	0.52	1.02	0.73	0.51	0.97	0.56	0.47	0.90	0.59	0.69
	Conjunction	0.51	0.55	0.61	0.54	0.57	0.73	0.51	0.88	0.70	0.62
	Happiness	0.12	0.22	0.20	0.16	0.28	0.26	0.13	0.28	0.22	0.20
	Disgust	0.03	0.06	0.05	0.04	0.06	0.03	0.04	0.04	0.04	0.04
Emotions	Fear	4.18	3.80	4.63	4.41	3.77	4.56	4.05	3.60	4.50	4.16
(Avg)	Anger	0.05	0.06	0.13	0.07	0.07	0.12	0.06	0.08	0.20	0.09
	Surprise	0.01	0.03	0.03	0.01	0.03	0.05	0.01	0.02	0.01	0.02
	Sadness	5.86	5.71	6.52	6.17	5.55	6.48	5.56	5.40	6.19	5.93
Polarity	Positive	2.41	3.25	2.93	2.55	3.22	2.95	2.26	3.26	2.96	2.86
(Avg)	Negative	0.05	0.06	0.05	0.07	0.10	0.09	0.06	0.07	0.06	0.06
(~~6)	Neutral	9.55	9.77	10.93	9.92	9.52	11.03	8.91	9.28	10.56	9.94

Table: FactNews data analysis.

æ

< □ > < □ > < □ > < □ > < □ >

- The distribution of **factuality** is *constant* across different domains.
- The distribution of **bias** varies according to the domain and media outlet.

Figure: The cross-domain distribution of factual and biased sentences.

Sentence-Level Factuality	Precision	Recall	F1-Score
BERT fine-tuning	0.89	0.89	0.88
Part-of-speech	0.77	0.77	0.76
TF-IDF	0.81	0.69	0.66
Polarity-lexicon	0.63	0.62	0.62
Emotion-lexicon	0.61	0.61	0.61
Sentence-Level Media Bias	Precision	Recall	F1-Score
BERT fine-tuning	0.70	0.68	0.67
Part-of-speech	0.67	0.66	0.66
Polarity-lexicon	0.50	0.50	0.50
Emotion-lexicon	0.53	0.52	0.50
TF-IDF	0.78	0.58	0.48

Figure: Model Evaluation on FactNews.

Senter	ce-Level	Media Bias Pred	iction	
Datasets	Lang	Docum.	Sent.	F1-Score
BASIL (baseline)	En	300 news	7,984	0.47
Biased-sents	En	46 news	966	-
BABE	En	100 news	3,700	0.80
FactNews	Pt	300 news	6,191	0.67
Senter	nce-Level	Factuality Predi	iction	
FactNews (baseline)	Pt	300 news	6,191	0.88
Artic	le-Level	Factuality Predic	tion	
MBFC (baseline)	En	1,066 medias	-	0.58
MBFC corpus	En	489 medias	-	0.76*

Figure: Comparison with literature.

メロト メタト メヨト メヨト

Systems

э.

・ロト ・四ト ・ヨト ・ヨト

Addisone um consentário (Add a commented	BRASIL #semódio
essa mulher da esquerda é uma porca asquerosa	
Enter 🖢	Enter 🦕
Orag and drop file here Limit 200MB per file - CSV Browse files	Drag and drop file here Limit 200MB per file - CSV Browse files
95% + Coffensiveness overall score	example.csv 96:08 Não-Ofensivo 17% Ofensivo 0fensivo 0fensivo 0fensivo 0fensivo 0fensivo: 17% Levemente Ofensivo: 17%
Categoria: Altamente Ofensivo Confiabilidade da Predição: 99% Offensiveness category Prediction reliability score	Confiabilidade da Predição: 87% Prediction reliability score Download

Figure: NoHateBrazil: A Brazilian Portuguese Text Offensiveness Analysis System.

Francielle Vargas	University of São Paulo	September 18, 2024	34 / 43
		イロン イロン イヨン イヨン	E DQC

C

Valdemar Costa Neto comentou sua relação com o atual presidente, Lula (PT). Dado o cenário a favor do petista, eu acho que Bolsonaro deveria sair do país. Na avaliação do Presidente do PL, "o trato com Lula é muito mais fácil". Por fim, ele afirmou que o Nordeste tem a maior número acidentes com vítimas fatais do Brasil. Além disso, a Sede do Ministério Público do Nordeste sempre é alvo de protestos. De acordo com a polícia, "os protestos são apenas ameaças e ninguém sai rédic". Ar ua foi interditada pela policia. Contudo, eu gosto de vero s protestos por que são initeris.

Check

Rationales Trustworthiness Score Graph Display

Valdemar Costa Neto comentou sua relação com o atual presidente, Lula (PT). FACT

Dado o cenário a favor do petista, eu acho que Bolsonaro deveria sair do país. BIAS

Na avaliação do Presidente do PL, "o trato com Lula é muito mais fácil". | FACT-QUOTES

Por fim, ele afirmou que o Nordeste tem a maior número acidentes com vítimas fatais do Brasil. | FAKE

Além disso, a Sede do Ministério Público do Nordeste sempre é alvo de protestos. FACT

De acordo com a polícia, "os protestos são apenas ameaças e ninguém sai ferido". | FACT-QUOTES

A rua foi interditada pela polícia. FACT

Contudo, eu gosto de ver os protestos por que são inúteis. BIAS

Figure: FACTual: A Fact-Checking Explainable Factual Reasoning System.

メロト メポト メヨト メヨト

Figure: FACTual: A Fact-Checking Explainable Factual Reasoning System.

æ

< □ > < □ > < □ > < □ > < □ >

Ongoing Research: Measuring Moral Sentiment for Improving Explainability and Fairness in Automated Fact-Checking and Hate Speech Technologies.

MFTC-pt corpus

Description	Total	Platform	Annotators	Туре
Moral Foundations Theory	10k	Twitter and	3 (Three)	Political events,
Corpus for Portuguese		Instagram		fake news and hate speech

Table: MFTC-pt: Data Overview.

æ

メロト メタト メヨト メヨト

text	platform	mft_sent	rationales	mft_sent	rationales
Betrayal is the lack of commitment and failure to keep the word given by the president to the then Judge Sérgio Moro, all of this I think, to protect Bolsonaro's family	Twitter	Betrayal (LN)	Betrayal; lack of commitment; fail- ure to keep the word	-	-
Birds of a feather!!! I feel disgusted about Brazilian's politicians	Instagram	Harm (HN)	two birds of a feather	Degradation (PN)	l feel dis- gusted about Brazilian's politicians

Table: MFTC-pt: Data Annotation (*mft_sentiment* and *rationales*).

æ

メロト メタト メヨト メヨト

Portuguese	Portuguese (pt-br)		(en-us)	
Termos/Expressões	Categorias	Terms/Expressions	Categories	
hipócrita/hipocrisia	Injustiça	hypocrite/hypocrisy	Cheating (FN)	
vai trabalhar	Injustiça	go to work	Cheating (FN)	
porca/vaca/cachorra	Depravação	pig/cow/dog	Degradation (PN)	
ânsia de vômito	Depravação	vomiting sensation	Degradation (PN)	
nojo/nojento	Depravação	disgust	Degradation (PN)	
comunista	Subversão	communist	Subversion (AN)	
lixo humano	Prejudicial	human wreckage	Degradation (PN)	
ridícula	Prejudicial	ridiculous	Harm (HN)	
impeachment	Subversão	impeachment	Subversion (AN)	
horrorosa/feio	Prejudicial	horrible/ugle	Harm (HN)	
terrorista	Subversão	terrorist	Subversion (AN)	
sujo/suja	Depravação	dirty	Degradation (PN)	
mamar nas tetas do governo	Depravação	suck on cow's teats	Degradation (PN); Cheating (FN)	
safado/safada	Depravação	perverted	Degradation (PN)	
sem vergonha	Prejudicial	shameless	Harm (HN)	
bruxa	Prejudicial	witch	Degradation (PN)	
criminoso/Bandido	Injustiça	criminal/bandit	Cheating (FN)	
filho da puta	Depravação	motherfucker	Degradation (PN)	
farinha do mesmo saco	Injustiça	birds of a feather	Harm (FN)	
papo furado/falar besteiras/ladainha	Prejudicial	chitchat	Harm (FN);	
inútil	Prejudicial	useless	Harm (FN)	
inveja/ciúme	Prejudicial	envy/jealousy	Cheating (FN)	

Francielle Vargas

Morality Sentiment: MFTC-pt Corpus

Francielle Vargas

University of São Paulo

September 18, 2024

41/43

Thank you!

To access the datasets, models, systems and papers

References

- Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov, James Glass, and Preslav Nakov. 2018a. Predicting factuality of reporting and bias of news media sources. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 3528–3539, Brussels, Belgium.
- Ramy Baly, Mitra Mohtarami, James Glass, Lluís Màrquez, Alessandro Moschitti, and Preslav Nakov. 2018b. Integrating stance detection and fact checking in a unified corpus. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pages 21–27, New Orleans, United States.
- Aida Mostafazadeh Davani, Mohammad Atari, Brendan Kennedy, and Morteza Dehghani. 2023. Hate speech classifiers learn normative social stereotypes. *Transactions of the Association for Computational Linguistics*, 11:300–319.
 Thomas Davidson, Debasmita Bhattacharya, and Ingmar Weber. 2019. Racial bias in hate speech and abusive language detection datasets. In *Proceedings of the 3rd Workshop on Abusive Language Online*, pages 25–35, Florence, Italy.
 Paula Fortuna, Juan Soler, and Leo Wanner. 2020. Toxic, hateful, offensive or abusive? what are we really classifying? an empirical analysis of hate speech datasets. In *Proceedings of the 12th Language Resources and Evaluation*.