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Harmful Communication in Brazil: Contextualization

@ During the election period in 2018, denunciations against sexism had an in-
credible increase of 1.639,5%; xenophobia 595,5%; neo-nazism 262,0%;
public incitement to violence and crimes against life 161,17%; LGBTphobia

63,73% (Safetnet, 2018)*.
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Figure: Hate crimes occurrence in S3o Paulo from 2016 to the beginning of 2020.
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Harmful Communication in Brazil: Contextualization

@ From 1990 to 2019 there was a 543% increase in number of protestant churches
(BBC Brazil, 2023).

@ The Bolsonaro government (2019-2022) was marked by conservative narra-
tives (e.g., “family values” and “religious beliefs" against “immorality").
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Figure: “God, country and family” was the main slogan used by former Brazilian
President Bolsonaro during his electoral campaign and mandate.
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Harmful Communication in Brazil: Harmful Cycle
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Figure: Harmful cycle.
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Harmful Communication in Brazil: Challenges

o Data resources and methods mostly available for the English language.

@ Towards addressing the challenges of the automated fact-checking and hate
speech detection.

© Hate Speech Detection:
@ Inaccurate definition for offensiveness and hate speech (Davidson et al., 2017).
e Missing contextual (cultural) information (Davidson et al., 2019).
@ Scarce consideration of their social bias (Davani et al., 2023)

@ Automated Fact-Checking and News Credibility Verification:

o Fact-checking organizations (e.g. PolitiFact) have provided lists of unreliable
news articles and media sources (Baly et al., 2018), and most of them address
document-level analysis of media outlet. Nevertheless, each news article com-
prises multiple sentences that may contain factual information, bias, and fake
content.

o Automated fact-checking and news credibility verification at scale require accu-
rate prediction.
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Hate Speech Detection: Methods and Resources
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Figure: Data resources and methods for hate speech detection.
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Hate Speech Detection: Results

Tasks T Features set | Class | Precision [ Reaall Fl-Score
| | | NB | SVM | MLP | LSTM | NB | SVM | MLP | LSTM | MLP | LSTM
| [o [ 050 [ 051 [ 047 [ 049 [ o041 [ 039 [ 051 | [ 049 | 042
POS+S
| | | 050 | 051 | 054 | 049 | 050 | 064 | 051 | | 052 | oss
| | avg | 050 | 051 | os1 | 049 | os0o | ost | os1 | | os1 | o049
Task 1:
Offensive | | o | 085 | 082 | 092 | o083 | 086 | 096 | os1 | | os1 | os6
Language | Bow |1 | 086 | 095 | 079 | os8 | 085 | 079 | 090 | | 090 | o085
Detection
| | Avg | 085 | 088 | 08 | 085 | 085 | 087 | 086 | | 084 | o085
| | o | 074 | 078 | 094 | 079 | 097 | 096 | 077 | | 085 | 086
MOL
| |1 | 095 | 094 | 072 | 093 | 066 | 073 | 093 | | 081 | 083
| | Avg | 085 | 086 | 083 | 086 | 081 | 084 | 085 | | 081 | 084
| | o | 084 | 084 | 091 | 08 | 093 | 094 | 083 | | 087 |
| B |1 | 093 | 093 | 081 | o085 | 083 | 081 | 090 | | 086 |
| | Avg | 089 | 088 | 086 | 085 | 088 | 088 | 087 | | 086 |
I [0 [052 ] 049 | 042 | 052 | 048 | 078 | 053 | [T047 |
| FOSHS |1 | 052 | 047 | 063 | 052 | 056 | 020 | 052 | | | 057 |
| | Avg | 052 | 048 | 053 | 052 | 052 | 049 | 053 | 052 | 052 | 044 | 052 | 052
Task 2: | |0 |06 | 084 | 043 | 085 | 082 | 042 | 082 | 037 | 070 | 055 | 057 | 054
Hate Speech | gow
Detection | |1 | 073 | 061 | 091 | 061 | 049 | 092 | 061 | 093 | 059 | 073 | 073 | 073
| | Avg | 068 | 072 | 067 | 073 | 066 | 067 | 072 | 066 | 0.65 | 064 | 065 | 064
| | o | 061 | 062 | 058 | 060 | 074 | 080 | 068 | 093 | 067 | 069 | 063 | 073
| MOL |1 | 067 | 071 | 073 | 084 | 053 | 050 | 063 | 038 | 059 | 059 | 068 | 052
| | Avg | 064 | 066 | 066 | 072 | 064 | 065 | 066 | 065 | 0.63 | 064 | 066 | 063
| | o 079 | 077 | 093 | 071 | 078 | 093 | 079 | 089 | 078 | 084 | 086 | 079
| BeM |1 | 078 | 092 | 076 | o085 | 079 | 072 | 092 | 064 | 079 | 08gef YL e 073
| | Avg | 078 | 084 | 085 | 078 | o078 | 083 | 086 | 077 | 078 | d82 | 085 | q¥e

Teeee

contextual approach for hate speech detection
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Hate Speech Detection: Results
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Figure: SSA in different datasets. Figure: SSA in ML learning methods.
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Automated Fact-Checking: Methods and Resources
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Figure: A data resource and method for fact-checking.
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Automated Fact-Checking: Methods and Resources

Media Bias Examples

12 Types of Media Bias by AllSides SFGATE

1.Spin W Twitter banned or suspended several high-profile journalists Thursday
2.Unsubstantiated Claims .," evening, a move that further reveals the seemingly arbitrary decision-
3.0pinion Statements Presented as Fact-"" making of Elon Musk, a self-avowed “free speech absolutist”
4.Sensationalism/Emotionalism -,

5.Mudslinging/Ad

6.Mind Reading

7.Flawed logic E B

8.0mission of Source Attribution

P R e - The skinny version: There are more than a hundred Republican-held
9.Subjective Qualifying Adjectives L L S = e
. congressional districts across the country that have a narrower margin than 17. If
10. Word Choice 2
- N seats that look like this one in Pennsylvania are toss-ups in November, it's going to

11. Negativity Bias —_

- y . be a bloodbath.
12. Elite v. Populist Bias p——

Figure: Types of Media Bias Defined by AllSides?.

’https://www.allsides.com/media-bias/how-to-spot-types-of=media-bias
P November 17, 2023
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Automated Fact-Checking: Results

Deseription Folha de Sao Paulo Estadao 0 Globo Al
factual __quotes biased factual __quotes __ biased factual quotes __ biased

#Articles 100 100 100 300
#Sentences 1,494 750 231 1428 783 182 1320 758 45 6191
#Words 30,374 7,946 5,177 30,589 8,504 4,002 25,505 7,740 3,195 123,032

Avg Sentences/Article 14.94 7.03 3.78 14.28 7.00 3.19 13.20 7.15 2.84 8.15
Avg Words/Sentences 20.33 17.65 22,41 21,45 17,60 21,98 19,32 16,89 22,03 19,96
Body/Title Body 1337 740 207 1218 a3 162 1,089 741 31 5,408

Title 157 10 24 210 10 20 231 17 14 693

Political 912 340 130 870 352 106 748 351 64 3873

World 224 48 31 224 49 27 216 32 29 830

Domains Sports 100 23 34 124 25 29 98 18 39 490

Daily 132 1 2 %8 7 4 148 7 4 413

Culture 98 26 32 72 42 15 77 45 5 412

Science 28 2 2 40 8 1 33 5 4 123

Noun 485 4.09 572 5.21 712 5.60 259 382 5.19 279

Verb 2.20 255 2.60 2.28 251 2.53 2.00 2.44 2.57 4.18

Part-of-speech Adjective 1.03 1.03 1.32 111 1.08 1.32 0.94 0.97 1.48 1.14
(Avg) Adverb 0.67 0.82 0.93 0.67 0.94 0.90 0.59 0.90 0.94 0.81
Pronoun 0.52 1.02 0.73 0.51 0.97 0.56 0.47 0.90 0.59 0.69

Conjunction 0.51 0.55 0.61 0.54 0.57 0.73 0.51 0.88 0.70 0.62

Happiness 0.12 0.22 0.20 0.16 0.28 0.26 0.13 0.28 0.22 0.20

Disgust 0.03 0.06 0.05 0.04 0.06 0.03 0.04 0.04 0.04 0.04

Emotions Fear 4.18 3.80 4.63 4.41 3.77 4.56 4.05 3.60 4.50 4.16
(Avg) Anger 0.05 0.06 0.13 0.07 0.07 0.12 0.06 0.08 0.20 0.09
Surprise 0.01 0.03 0.03 0.01 0.03 0.05 0.01 0.02 0.01 0.02

Sadness 5.86 5.71 6.52 6.17 5.55 6.48 5.56 5.40 6.19 5.93

Polarity Positive 2.41 3.25 2.93 2.55 3.22 2.95 2.26 326 2.96 2.86
(Avg) Negative 0.05 0.06 0.05 0.07 0.10 0.09 0.06 0.07 0.06 0.06
Neutral 9.55 9.77 10.93 9.2 9.52 11.03 8.91 9.28 10.56 9.94

Table: FactNews dataset statistics.
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Automated Fact-Checking: Results

@ The distribution of factuality is constant across different domains.

@ The distribution of bias varies according to the domain and media outlet.
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Figure: The cross-domain distribution of factual and biased sentences.
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Automated Fact-Checking: Results

Sentence-Level Factuality Precision  Recall F1-Score

BERT fine-tuning 0.89 0.89 0.88
R Level Media Bias Prediction

Part-of-speech 077 0.77 076 Datasets Lang Docum. Sent.  F1-Score
TF-IDF 081 0.69 0.66 BASIL (baseline) En 300 news 7984 047
Polarity-lexicon 0.63 0.62 0.62 Biased-sents En 46 news 966 -
Emotion-lexicon 0.61 0.61 0.61 BABE En 100 news 3,700 0.80
Sentence-Level Media Bias  Precision  Recall F1-Score FactNews Pt 300news 6191 067

— — Sentence-Level Factuality Prediction
BERT fine-tuning 0.70 0.68 0.67 FaciNews (bascline) Pt 300news 6,191 088
Part-of-speech 0.67 0.66 0.66 Article-Level Factuality Prediction
Polarity-lexicon 0.50 0.50 0.50 MBFC (baseline) En 1,066 medias - 058
Emotion-lexicon 0.53 0.52 0.50 MBFC corpus En 489 medias - 076
TF-IDF 0.78 0.58 0.48

Figure: Result analysis.

Figure: Factually Prediction: Evaluation.
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Fact-checking and Hate Speech Detection Systems
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Valdemar Costa Neto comentou sua relagio com o atual presidente, Lula (PT). Dado o cendrio a favor e e B

do petista, eu acho que Bolsonaro deveria sair do pais. Na avaliaggo do Presidente do PL, o trato
«com Lula é "muito mais facil". Por fim, ele afirmou que o Nordeste tem a maior niimero acidentes
comvitimas fatais do Brasil.
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Valdemar Costa Neto comentou sua relagio com o atual presidente, Lula (PT).

{ Dado o cenirio a favor do petista, eu acho que Bolsonaro deveria sair do pais.

Na avaliagdo do Presidente do PL, o trato com Lula ¢ "muito mais facil”,

Por fim, ele afirmou que o Nordeste tem a maior niimero acidentes com vitimas fatais do Brasil. =~ F2xr Categoria: Altamente Ofensivo Confiabilidade da Predicio 29%

Figure: Automated Fact-Checking. Figure: Automated Offensiveness Analysis.
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Ongoing Research

© Hate Speech:
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